If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(F)=(F*3)-(3F^2)-144F+432
We move all terms to the left:
(F)-((F*3)-(3F^2)-144F+432)=0
determiningTheFunctionDomain -((F*3)-3F^2-144F+432)+F=0
We add all the numbers together, and all the variables
-((+F*3)-3F^2-144F+432)+F=0
We calculate terms in parentheses: -((+F*3)-3F^2-144F+432), so:We get rid of parentheses
(+F*3)-3F^2-144F+432
determiningTheFunctionDomain -3F^2+(+F*3)-144F+432
We add all the numbers together, and all the variables
-3F^2-144F+(+F*3)+432
We get rid of parentheses
-3F^2-144F+F*3+432
Wy multiply elements
-3F^2-144F+3F+432
We add all the numbers together, and all the variables
-3F^2-141F+432
Back to the equation:
-(-3F^2-141F+432)
3F^2+141F+F-432=0
We add all the numbers together, and all the variables
3F^2+142F-432=0
a = 3; b = 142; c = -432;
Δ = b2-4ac
Δ = 1422-4·3·(-432)
Δ = 25348
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25348}=\sqrt{4*6337}=\sqrt{4}*\sqrt{6337}=2\sqrt{6337}$$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(142)-2\sqrt{6337}}{2*3}=\frac{-142-2\sqrt{6337}}{6} $$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(142)+2\sqrt{6337}}{2*3}=\frac{-142+2\sqrt{6337}}{6} $
| 1-5y=-30 | | -4n-2=22 | | 111+48+x=180 | | x+89+111+x=180 | | -2p+9=-3-5p | | 4y-31=69 | | m1+m3=180 | | 9m+5=-4 | | (6b+16)+(32b)=180 | | 37.29=c+0.50 | | 3/8x=9/72 | | 7m-2-4m=17+8 | | a+3(a-3)=6 | | 7/8x-1/4+1/2=3/4+x | | 7(x+8)=10x-67 | | x+2x+(22+x)=162 | | 22(4x+2)=132 | | 2z=180 | | 3x+10+3x+8+90=180 | | 7x=63-2 | | -3(x+4)=10+6x | | 7x-2x+13=48 | | 2(2x-5)+1=x+3(x-2) | | x=365+(5×30) | | 19+4x=2x | | x+1/7(3x-2)=4 | | -14=8-2x | | -11p-6+12p=6 | | 16x2x=64 | | 3e-11=4 | | 6.10.70.5x−= | | 7/8-1/4+1/2=3/4+x |